Dimensionality reduction in machine learning for nonadiabatic molecular dynamics: Effectiveness of elemental sublattices in lead halide perovskites
Supervised machine learning (ML) and unsupervised ML have been performed on descriptors generated from nonadiabatic (NA) molecular dynamics (MD) trajectories representing non-radiative charge recombination in CsPbI3, a promising solar cell and optoelectronic material. Descriptors generated from ever...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/161252 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Supervised machine learning (ML) and unsupervised ML have been performed on descriptors generated from nonadiabatic (NA) molecular dynamics (MD) trajectories representing non-radiative charge recombination in CsPbI3, a promising solar cell and optoelectronic material. Descriptors generated from every third atom of the iodine sublattice alone are sufficient for a satisfactory prediction of the bandgap and NA coupling for the use in the NA-MD simulation of nonradiative charge recombination, which has a strong influence on material performance. Surprisingly, descriptors based on the cesium sublattice perform better than those of the lead sublattice, even though Cs does not contribute to the relevant wavefunctions, while Pb forms the conduction band and contributes to the valence band. Simplification of the ML models of the NA-MD Hamiltonian achieved by the present analysis helps to overcome the high computational cost of NA-MD through ML and increase the applicability of NA-MD simulations. |
---|