Anomalous single-mode lasing induced by nonlinearity and the non-hermitian skin effect

Single-mode operation is a desirable but elusive property for lasers operating at high pump powers. Typically, single-mode lasing is attainable close to threshold, but increasing the pump power gives rise to multiple lasing peaks due to inter-modal gain competition. We propose a laser with the oppos...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhu, Bofeng, Wang, Qiang, Leykam, Daniel, Xue, Haoran, Wang, Qi Jie, Chong, Yidong
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/161271
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Single-mode operation is a desirable but elusive property for lasers operating at high pump powers. Typically, single-mode lasing is attainable close to threshold, but increasing the pump power gives rise to multiple lasing peaks due to inter-modal gain competition. We propose a laser with the opposite behavior: multimode lasing occurs at low output powers, but pumping beyond a certain value produces a single lasing mode, with all other candidate modes experiencing negative effective gain. This phenomenon arises in a lattice of coupled optical resonators with non-fine-tuned asymmetric couplings, and is caused by an interaction between nonlinear gain saturation and the non-Hermitian skin effect. The single-mode lasing is observed in both frequency domain and time domain simulations. It is robust against on-site disorder, and scales up to large lattice sizes. This finding might be useful for implementing high-power laser arrays.