A survey on image and video cosegmentation: methods, challenges and analyses

Image and video cosegmentation is a newly emerging and rapidly progressing area, which aims at delineating common objects at pixel-level from a group of images or a set of videos. Plenty of related works have been published and implemented in varied applications, but there lacks a systematic survey...

Full description

Saved in:
Bibliographic Details
Main Authors: Ren, Yan, Kong, Adams Wai Kin, Jiao, Licheng
Other Authors: School of Computer Science and Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/161281
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Image and video cosegmentation is a newly emerging and rapidly progressing area, which aims at delineating common objects at pixel-level from a group of images or a set of videos. Plenty of related works have been published and implemented in varied applications, but there lacks a systematic survey on both image and video cosegmentation. This paper provides a comprehensive overview including the existing methods, applications, and challenges. Specifically, different cosegmentation problem settings are described, the formulation details of the methods are summarized and their potential applications are listed. Moreover, the benchmark datasets and standard evaluation metrics are also given; and the future directions and unsolved challenges are discussed.