Distance-based detection of cough, wheeze, and breath sounds on wearable devices
Smart wearable sensors are essential for continuous health-monitoring applications and detection accuracy of symptoms and energy efficiency of processing algorithms are key challenges for such devices. While several machine-learning-based algorithms for the detection of abnormal breath sounds are re...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/161310 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Smart wearable sensors are essential for continuous health-monitoring applications and detection accuracy of symptoms and energy efficiency of processing algorithms are key challenges for such devices. While several machine-learning-based algorithms for the detection of abnormal breath sounds are reported in literature, they are either too computationally expensive to implement into a wearable device or inaccurate in multi-class detection. In this paper, a kernel-like minimum distance classifier (K-MDC) for acoustic signal processing in wearable devices was proposed. The proposed algorithm was tested with data acquired from open-source databases, participants, and hospitals. It was observed that the proposed K-MDC classifier achieves accurate detection in up to 91.23% of cases, and it reaches various detection accuracies with a fewer number of features compared with other classifiers. The proposed algorithm's low computational complexity and classification effectiveness translate to great potential for implementation in health-monitoring wearable devices. |
---|