Characterisation of Salmonella Enteritidis ST11 and ST1925 associated with human intestinal and extra-intestinal infections in Singapore

Salmonella Enteritidis is a major foodborne pathogen worldwide. In this study, a total of 276 S. enteritidis isolates, collected between 2016 and 2017 from human, food and farm/slaughterhouse samples, were studied to enhance the understanding of the epidemiology of human salmonellosis in Singapore....

Full description

Saved in:
Bibliographic Details
Main Authors: Aung, Kyaw Thu, Khor, Wei Ching, Ong, Kar Hui, Tan, Wei Ling, Wong, Zhi Ning, Oh, Jia Quan, Wong, Wai Kwan, Tan, Brian Zi Yan, Maiwald, Matthias, Tee, Nancy Wen Sim, Barkham, Timothy, Koh, Tse Hsien, Dalsgaard, Anders, Chen, Swaine L., Schlundt, Joergen, Ng, Lee Ching
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/161410
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Salmonella Enteritidis is a major foodborne pathogen worldwide. In this study, a total of 276 S. enteritidis isolates, collected between 2016 and 2017 from human, food and farm/slaughterhouse samples, were studied to enhance the understanding of the epidemiology of human salmonellosis in Singapore. Results showed all 276 isolates belonged either to ST1925 (70.3%) or ST11 (29.7%), with ST11 being significantly more frequent in extra-intestinal isolates and chicken isolates. Food isolates, most of which were from poultry, showed the highest prevalence of resistance (33-37%) against beta-lactams or beta-lactams/beta-lactamase inhibitor combination (ampicillin, piperacillin and ampicillin/sulbactam). The analysis showed the detection of genes associated with resistance to aminoglycoside genes (99.6%), tetracycline (55.1%), and beta-lactams (14.9%) of all isolates. Nine types of plasmids were found in 266 isolates; the most common incompatibility group profiles were IncFIB(S)-IncFII(S)-IncX1 (72.2%) and IncFIB(S)-IncFII(S) (15.8%). Most plasmid harbouring isolates from chicken (63.6%, 14/22) and from human (73.8%, 175/237) shared the same plasmid profile (IncFIB(S)-IncFII(S)-IncX1). SNP analysis showed clustering of several isolates from poultry food products and human isolates, suggesting phylogenetic relatedness among these isolates. Lastly, this study provides important epidemiological insights on the application of phenotypic and next-generation sequencing (NGS) tools for improved food safety and public health surveillance and outbreak investigation of S.enteritidis.