Skeleton-based relational reasoning for group activity analysis

Research on group activity recognition mostly leans on the standard two-stream approach (RGB and Optical Flow) as their input features. Few have explored explicit pose information, with none using it directly to reason about the persons interactions. In this paper, we leverage the skeleton informati...

Full description

Saved in:
Bibliographic Details
Main Authors: Perez, Mauricio, Liu, Jun, Kot, Alex Chichung
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/161422
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Research on group activity recognition mostly leans on the standard two-stream approach (RGB and Optical Flow) as their input features. Few have explored explicit pose information, with none using it directly to reason about the persons interactions. In this paper, we leverage the skeleton information to learn the interactions between the individuals straight from it. With our proposed method GIRN, multiple relationship types are inferred from independent modules, that describe the relations between the body joints pair-by-pair. Additionally to the joints relations, we also experiment with the previously unexplored relationship between individuals and relevant objects (e.g. volleyball). The individuals distinct relations are then merged through an attention mechanism, that gives more importance to those individuals more relevant for distinguishing the group activity. We evaluate our method in the Volleyball dataset, obtaining competitive results to the state-of-the-art. Our experiments demonstrate the potential of skeleton-based approaches for modeling multi-person interactions.