The spatiotemporal relationship between PM2.5 and aerosol optical depth in China: influencing factors and implications for satellite PM2.5 estimations using MAIAC aerosol optical depth

Satellite aerosol retrievals have been a popular alternative to monitoring the surface-based PM2.5 concentration due to their extensive spatial and temporal coverage. Satellite-derived PM2.5 estimations strongly rely on an accurate representation of the relationship between ground-level PM2.5 and sa...

Full description

Saved in:
Bibliographic Details
Main Authors: He, Qingqing, Wang, Mengya, Yim, Steve Hung Lam
Other Authors: Asian School of the Environment
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/161483
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Satellite aerosol retrievals have been a popular alternative to monitoring the surface-based PM2.5 concentration due to their extensive spatial and temporal coverage. Satellite-derived PM2.5 estimations strongly rely on an accurate representation of the relationship between ground-level PM2.5 and satellite aerosol optical depth (AOD). Due to the limitations of satellite AOD data, most studies have examined the relationship at a coarse resolution (i.e., ≥10km) thus, more effort is still needed to better understand the relationship between "in situ"PM2.5 and AOD at finer spatial scales. While PM2.5 and AOD could have obvious temporal variations, few studies have examined the diurnal variation in their relationship. Therefore, considerable uncertainty still exists in satellite-derived PM2.5 estimations due to these research gaps. Taking advantage of the newly released fine-spatial-resolution satellite AOD data derived from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm and real-time ground aerosol and PM2.5 measurements, this study explicitly explored the relationship between PM2.5 and AOD as well as its plausible impact factors, including meteorological parameters and topography, in mainland China during 2019, at various spatial and temporal scales. The coefficient of variation, the Pearson correlation coefficient and the slope of the linear regression model were used. Spatially, stronger correlations mainly occurred in northern and eastern China, and the linear slope was larger on average in northern inland regions than in other areas. Temporally, the PM2.5-AOD correlation peaked at noon and in the afternoon, and reached a maximum in winter. Simultaneously, considering relative humidity (RH) and the planetary boundary layer height (PBLH) in the relationship can improve the correlation, but the effect of RH and the PBLH on the correlation varied spatially and temporally with respect to both strength and direction. In addition, the largest correlation occurred at 400-600m primarily in basin terrain such as the Sichuan Basin, the Shanxi-Shaanxi basins and the Junggar Basin. MAIAC 1km AOD can better represent the ground-level fine particulate matter in most domains with exceptions, such as in very high terrain (i.e., Tibetan Plateau) and northern central China (i.e., Qinghai and Gansu). The findings of this study have useful implications for satellite-based PM2.5 monitoring and will further inform the understanding of the aerosol variation and PM2.5 pollution status of mainland China.