A Ulam's game for video based action recognition

In this dissertation, we propose a conditional early exiting framework with Ulam’s Game for action recognition. Since the action recognition system has extremely high requirements on dynamic performance, our system pays more attention to improving the detection efficiency of the system, hoping to ob...

全面介紹

Saved in:
書目詳細資料
主要作者: Zheng, Haofeng
其他作者: Tay Wee Peng
格式: Thesis-Master by Coursework
語言:English
出版: Nanyang Technological University 2022
主題:
在線閱讀:https://hdl.handle.net/10356/161732
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:In this dissertation, we propose a conditional early exiting framework with Ulam’s Game for action recognition. Since the action recognition system has extremely high requirements on dynamic performance, our system pays more attention to improving the detection efficiency of the system, hoping to obtain the detection results in a shorter time. In our system, we use a modified ResNet-50 as backbone network to do feature extraction and use a Pooling module to accumulate feature. Then, we have a neural network Gate module to determine whether the feature have accumulated enough to begin Ulam’s Game. A classifier is used to get candidate results, which are used to run Ulam’s Game and get the final prediction. The model shows good detection accuracy and dynamic performance in multiple data sets (Mini-Kinetics, ActivityNet).