Effect of temperature on the fracture energy of adhesive layers of engineered wood

Adhesive layers in engineered wood are critical for shear stress transfer, particularly under load-bearing conditions. Though there is some data on the shear strength of the adhesive layers, there is limited data on their fracture energy and how it varies with temperature. Understanding the fracture...

全面介紹

Saved in:
書目詳細資料
Main Authors: Zhang, Zhongwen, Dasari, Aravind
其他作者: School of Materials Science and Engineering
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/161850
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Adhesive layers in engineered wood are critical for shear stress transfer, particularly under load-bearing conditions. Though there is some data on the shear strength of the adhesive layers, there is limited data on their fracture energy and how it varies with temperature. Understanding the fracture energy could reduce the inconsistencies caused by stress singularity and crack nucleation in a shear strength testing methodology. Therefore, in this article, a 4-pointing bending test framework was used to investigate the fracture energy of the adhesive layers at different temperatures. It is found that the fracture energy of the adhesive layer bonding the 0o/90o (cross-laminated) oriented timber plies is ∼30% lesser than that of the layer bonding 0o/0o (parallel) plies. More importantly, irrespective of the arrangement/orientation of the plies, a steady decline in fracture energy is seen with increase in temperature. For instance, by ∼130oC, the fracture energy of the adhesive layer has reduced by ∼53% in a cross-laminated state and ∼39% for those plies bonded in 0o/0o orientation. Finite element analysis was also conducted based on the cohesive elements and cohesive zone model for validation of the experimentally measured fracture energy.