Facile synthesis of electrocatalytically active bismuth oxide nanosheets for detection of palladium traces in pharmaceutical wastewater

Current synthesis routes of bismuth oxide nanosheets (BiONS) are relatively complicated, requiring the use of halogens or metalloids. Herein, a facile method to synthesize BiONS without the addition of halogens or other metalloids was developed. The synthesized BiONS were identified to have flake-sh...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhao, Ke, Ge, Liya, Lisak, Grzegorz
Other Authors: School of Civil and Environmental Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/161926
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Current synthesis routes of bismuth oxide nanosheets (BiONS) are relatively complicated, requiring the use of halogens or metalloids. Herein, a facile method to synthesize BiONS without the addition of halogens or other metalloids was developed. The synthesized BiONS were identified to have flake-shaped structures (300-1000 nm in width) with the thickness of 6-10 nm, which were predominantly made of β-Bi2O3. Such BiONS were applied to modify the surface of screen-printed carbon electrodes (BiONS-SPCEs) for the development of a robust palladium (Pd2+) sensor. After optimizing the electrochemical parameters of the sensor, it was found that the linear sensor response range and limit of detection for Pd2+ were 40-400 and 1.4 ppb, respectively. The electrocatalytic activity of the Pd2+-sensor was validated in the competing environment of other metal and metalloid ions. Real samples collected during a Pd recovery process from pharmaceutical wastewater were used to verify the application of BiONS-SPCEs in control of palladium recovery process. The quantitative results of post recovery palladium concentrations obtained using BiONS-SPCEs in treated pharmaceutical wastewater samples were in good agreement with those obtained by inductively coupled plasma-optical emission spectrometry (ICP-OES). Thus, such Pd2+-sensor provided the possibility of on-site process control of complex industrial samples for obtaining near-instant information that would lead to better management of resources used in the process, and same time assure environmental standards for both recovered products and processed discharge.