Activatable molecular probes for second near-infrared fluorescence, chemiluminescence, and photoacoustic imaging
Optical imaging plays a crucial role in biomedicine. However, due to strong light scattering and autofluorescence in biological tissue between 650-900 nm, conventional optical imaging often has a poor signal-to-background ratio and shallow penetration depth, which limits its ability in deep-tissue i...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/162029 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Optical imaging plays a crucial role in biomedicine. However, due to strong light scattering and autofluorescence in biological tissue between 650-900 nm, conventional optical imaging often has a poor signal-to-background ratio and shallow penetration depth, which limits its ability in deep-tissue in vivo imaging. Second near-infrared fluorescence, chemiluminescence, and photoacoustic imaging modalities mitigate these issues by their respective advantages of minimized light scattering, eliminated external excitation, and ultrasound detection. To enable disease detection, activatable molecular probes (AMPs) with the ability to change their second near-infrared fluorescence, chemiluminescence, or photoacoustic signals in response to a biomarker have been developed. This Minireview summarizes the molecular design strategies, sensing mechanisms, and imaging applications of AMPs. The potential challenges and perspectives of AMPs in deep-tissue imaging are also discussed. |
---|