The function of pitching in Beetle's flight revealed by insect-wearable backpack

The study of insect flight orientation is important for investigating flapping-wing aerodynamics and designing bioinspired micro air vehicles (MAVs). Pitch orientation plays a vital role in flight control, which has been explored less than directional control. In this study, the role of pitching man...

Full description

Saved in:
Bibliographic Details
Main Authors: Fu, Fang, Li, Yao, Wang, Haitong, Li, Bing, Sato, Hirotaka
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/162079
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The study of insect flight orientation is important for investigating flapping-wing aerodynamics and designing bioinspired micro air vehicles (MAVs). Pitch orientation plays a vital role in flight control, which has been explored less than directional control. In this study, the role of pitching maneuvers in flight was revealed by mounting an insect-wearable backpack on a beetle, which transformed the live insect into a bioelectronic device. The flight status of the cyborg beetle in a large chamber was recorded wirelessly. Accordingly, the pitch angle and forward acceleration showed a strong linear relationship. The coupling of pitch angle and forward acceleration was due to a tilted net aerodynamic force and the induced air drag. Moreover, the left and right subalar muscles of the beetle, a pair of major flight muscles, were electrically stimulated in free flight on demand to pitch up the beetle's body. We demonstrated that the induced nose-up movements were effective for decelerating the beetle in air. The flight orientation findings from the flying cyborgs would inspire a new approach to the study of flapping-wing flight and control of flapping-wing MAVs.