Semiconducting polymer nano-regulators with cascading activation for photodynamic cancer immunotherapy
Combination photoimmunotherapy holds promise for tumor suppression; however, smart phototherapeutic agents that only activate their immune pharmaceutical action in tumors have been rarely developed. Herein, we report a semiconducting polymer (SP) nano-regulator (SPNT ) with cascading activation for...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/162218 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Combination photoimmunotherapy holds promise for tumor suppression; however, smart phototherapeutic agents that only activate their immune pharmaceutical action in tumors have been rarely developed. Herein, we report a semiconducting polymer (SP) nano-regulator (SPNT ) with cascading activation for combinational photodynamic cancer immunotherapy. SPNT comprises an immunoregulator (M-Trp: 1-methyltryptophan) conjugating to the side chain of the SP backbone via an apoptotic biomarker-cleavable linker. Under near-infrared photoirradiation, SPNT produces singlet oxygen to induce immunogenic apoptosis. Concurrently, an apoptotic biomarker is upregulated, which triggers the specific cleavage of M-Trp for indoleamine 2,3-dioxygenase (IDO) activity inhibition, regulatory T cells reduction and cytotoxic T lymphocytes infiltration. SPNT -mediated combination photodynamic immunotherapy thus reprograms the tumor immune microenvironment, resulting in efficient suppression of tumors, and inhibition of lung metastasis. |
---|