Emerging phases of layered metal chalcogenides

Layered metal chalcogenides, as a "rich" family of 2D materials, have attracted increasing research interest due to the abundant choices of materials with diverse structures and rich electronic characteristics. Although the common metal chalcogenide phases such as 2H and 1T have been inten...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang, Ping, Yang, Yang, Pan, Er, Liu, Fucai, Ajayan, Pulickel M., Zhou, Jiadong, Liu, Zheng
Other Authors: School of Materials Science and Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/162265
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Layered metal chalcogenides, as a "rich" family of 2D materials, have attracted increasing research interest due to the abundant choices of materials with diverse structures and rich electronic characteristics. Although the common metal chalcogenide phases such as 2H and 1T have been intensively studied, many other unusual phases are rarely explored, and some of these show fascinating behaviors including superconductivity, ferroelectrics, ferromagnetism, etc. From this perspective, the unusual phases of metal chalcogenides and their characteristics, as well as potential applications are introduced. First, the unusual phases of metal chalcogenides from different classes, including transition metal dichalcogenides, magnetic element-based chalcogenides, and metal phosphorus chalcogenides, are discussed, respectively. Meanwhile, their excellent properties of different unusual phases are introduced. Then, the methods for producing the unusual phases are discussed, specifically, the stabilization strategies during the chemical vapor deposition process for the unusual phase growth are discussed, followed by an outlook and discussions on how to prepare the unusual phase metal dichalcogenides in terms of synthetic methodology and potential applications.