Heat-insulating black electrochromic device enabled by reversible nickel-copper electrodeposition

An electrochromic device (ECD), which can switch between black and transmissive states under electrical bias, is a promising candidate for smart windows due to its color neutrality and excellent durability. Most of the black ECDs are achieved through a reversible electrodeposition and dissolution me...

Full description

Saved in:
Bibliographic Details
Main Authors: Guo, Xiaoyu, Chen, Jingwei, Eh, Alice Lee-Sie, Poh, Wei Church, Jiang, Fan, Jiang, Feng, Chen, Juntong, Lee, Pooi See
Other Authors: School of Materials Science and Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/162303
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:An electrochromic device (ECD), which can switch between black and transmissive states under electrical bias, is a promising candidate for smart windows due to its color neutrality and excellent durability. Most of the black ECDs are achieved through a reversible electrodeposition and dissolution mechanism; however, they typically suffer from relatively poor cycling stability and a slow coloration/bleaching time. Herein, we present a heat-insulating black ECD with a gel electrolyte that operates via reversible Ni-Cu electrodeposition and dissolution. With the adoption of a Cu alloying strategy and a compatible gel electrolyte, this two-electrode ECD (5.0 cm × 2.5 cm) can achieve a cycling stability of 1500 cycles with transmittance modulation up to 55.2% in short coloration (6.2 s) and bleaching times (13.2 s) at a wavelength of 550 nm. Additionally, the ECD can be switched from the transparent state (visible light transmittance: 0.566) to the opaque state (visible light transmittance: 0.003) within 1 min, reaching transmittance less than 5% across the visible-near-infrared spectrum (400-2000 nm) to efficiently block solar heat. Besides, in the voltage-off state, the black Ni-Cu alloy film can be sustained for more than 60 min (at room temperature, λ = 550 nm). Under infrared irradiation (170 W/m2) for 30 min, the black ECD blocks up to 35.0% of infrared radiation, which not only effectively prevents the heat transmission for energy management but also finds potential applications for promoting indoor human health and indoor farming.