Circular economy-driven ammonium recovery from municipal wastewater: state of the art, challenges and solutions forward

In current biological nitrogen removal (BNR) processes, most of ammonium in municipal wastewater is biologically transformed to nitrogen gas, making ammonium recovery impossible. Thus, this article aims to provide a holistic review with in-depth discussions on (i) current BNR processes for municipal...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhang, Xiaoyuan, Liu, Yu
Other Authors: School of Civil and Environmental Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/162378
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:In current biological nitrogen removal (BNR) processes, most of ammonium in municipal wastewater is biologically transformed to nitrogen gas, making ammonium recovery impossible. Thus, this article aims to provide a holistic review with in-depth discussions on (i) current BNR processes for municipal wastewater treatment, (ii) environmental and economic costs behind ammonium in municipal wastewater, (iii) state of the art of ammonium recovery from municipal wastewater including anaerobic membrane bioreactor turning municipal wastewater to a liquid fertilizer, capturing ammonium in phototrophic biomass, waste activated sludge for land application, bioelectrochemical systems, biological conversion of ammonium to nitrous oxide as a fuel oxidizer, and adsorption, (iv) feasibility and challenge of adsorption for ammonium recovery from municipal wastewater and (v) innovative municipal wastewater reclamation processes coupled with ammonium recovery. Moving forward, municipal wastewater reclamation and resource recovery should be addressed under the framework of circular economy.