Simulation and modeling of polymer electrolyte membrane fuel cell

With the global industrialized societies growing at rapid pace, the demand for energy has grown in such a way that it is now impossible to be satisfied with the conventional energy sources. Green energy research and development is playing an increasingly greater role in our society. And PEM (Polymer...

Full description

Saved in:
Bibliographic Details
Main Author: Cheng, Kelvin Yeo Boon.
Other Authors: Zhao Yong
Format: Final Year Project
Language:English
Published: 2009
Subjects:
Online Access:http://hdl.handle.net/10356/16246
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:With the global industrialized societies growing at rapid pace, the demand for energy has grown in such a way that it is now impossible to be satisfied with the conventional energy sources. Green energy research and development is playing an increasingly greater role in our society. And PEM (Polymer Electrolyte Membrane) fuel cell, a form of promising green energy, has been increasingly implemented in a wide range of applications. As with all these applications, control engineering plays a very important part in ensuring that PEM fuel cells achieves optimal performance. In addition, in order to practice good control engineering, numerous devices are used for measuring the real-time operating conditions of the fuel cell and for modifications should conditions be unfavorable. In this project, I have implemented a simple semi-analytical PEM fuel cell model and analyzed individual influences of the fuel cell operating parameters; they are temperature, pressures and relative membrane humidity. By varying the operating parameters individually, while keep other parameters constant, I have found out that each of the parameters have different influences on the fuel cell performances. Through the simulation conducted, I managed to better predict the behaviour of the PEM fuel cell. Finally, the results obtained from this project is being validated with the model that other came up with. Henceforth, we are then able to come up with measurements and control equipments with different complexities, so as to reduce the costs for fuel cell development