Members of thin π⁰₁ classes and generic degrees

A π⁰₁ class P is thin if every π⁰₁ subclass Q of P is the intersection of P with some clopen set. In 1993, Cenzer, Downey, Jockusch and Shore initiated the study of Turing degrees of members of thin π⁰₁ classes, and proved that degrees containing no members of thin π⁰₁ classes can be recursively enu...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Stephan, Frank, Wu, Guohua, Yuan, Bowen
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2022
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/162480
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:A π⁰₁ class P is thin if every π⁰₁ subclass Q of P is the intersection of P with some clopen set. In 1993, Cenzer, Downey, Jockusch and Shore initiated the study of Turing degrees of members of thin π⁰₁ classes, and proved that degrees containing no members of thin π⁰₁ classes can be recursively enumerable, and can be minimal degree below 0'. In this paper, we work on this topic in terms of genericity, and prove that all 2-generic degrees contain no members of thin π⁰₁ classes. In contrast to this, we show that all 1-generic degrees below 0' contain members of thin π⁰₁ classes.