Modulating scalable Gaussian processes for expressive statistical learning
For a learning task, Gaussian process (GP) is interested in learning the statistical relationship between inputs and outputs, since it offers not only the prediction mean but also the associated variability. The vanilla GP however is hard to learn complicated distribution with the property of, e.g.,...
Saved in:
Main Authors: | , , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/162582 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |