Game-theoretic inverse reinforcement learning: a differential pontryagin's maximum principle approach
This paper proposes a game-theoretic inverse reinforcement learning (GT-IRL) framework, which aims to learn the parameters in both the dynamic system and individual cost function of multistage games from demonstrated trajectories. Different from the probabilistic approaches in computer science commu...
Saved in:
Main Authors: | , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/162585 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|