A review of tectonic, elastic and visco-elastic models exploring the deformation patterns throughout the eruption of Soufrière Hills volcano on Montserrat, West Indies

Since the eruption began in 1995, Soufrière Hills volcano on Montserrat has been characterised by five phases of magma extrusion and corresponding pauses. Despite a lack of eruptive surface activity since 2010, the volcano continues to show signs of unrest in the form of ongoing outgassing, and infl...

Full description

Saved in:
Bibliographic Details
Main Authors: Neuberg, J.W., Taisne, Benoît, Burton, M., Ryan, G. A., Calder, E., Fournier, N., Collinson, A. S. D.
Other Authors: Earth Observatory of Singapore
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/162664
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-162664
record_format dspace
spelling sg-ntu-dr.10356-1626642022-11-05T23:31:18Z A review of tectonic, elastic and visco-elastic models exploring the deformation patterns throughout the eruption of Soufrière Hills volcano on Montserrat, West Indies Neuberg, J.W. Taisne, Benoît Burton, M. Ryan, G. A. Calder, E. Fournier, N. Collinson, A. S. D. Earth Observatory of Singapore Science::Geology Deformation Magma Compressibility Since the eruption began in 1995, Soufrière Hills volcano on Montserrat has been characterised by five phases of magma extrusion and corresponding pauses. Despite a lack of eruptive surface activity since 2010, the volcano continues to show signs of unrest in the form of ongoing outgassing, and inflation of the entire island of Montserrat. Using numerical modelling, we compare a set of contrasting deformation models in an attempt to understand the current state of Soufrière Hills volcano, and to gauge its future eruption potential. We apply a suite of deformation models including faults and dykes, and an ellipsoidal source geometry to all phases and pauses covering the entire eruptive history from 1995 through 2020. Based on recent petrological evidence suggesting no recent injection of magma from depth after an initial magma intrusion, we test the hypothesis that the ongoing inflation of Montserrat could be explained by a visco-elastic, crustal response to the initial magma intrusion without a renewed pressurisation due to magma injection. In contrast to previous modelling attempts, we focus on conceptual models and compare elastic- with several visco-elastic models taking temperature-dependent viscosity models, tectonic components, mass balance, magma compressibility and outgassing data into account. We explore a wide parameter space in a Generalised Maxwell Rheology to explain the observed deformation patterns, and demonstrate that a realistic, depth-dependent distribution of visco-elastic parameters does not allow an interpretation of the deformation signal without any magma influx or further pressurisation. Within the range of large uncertainties attached to the visco-elastic model parameters we show that visco-elasticity reduces the degree of ongoing pressurisation or magma influx into a crustal reservoir by a few percent. We conclude that magma influx at a rate of 0.10 to 0.57 m3/s is the most likely explanation of the current deformation pattern and is also in agreement with mass balance considerations and current SO2 flux observations. Ministry of Education (MOE) National Research Foundation (NRF) Published version This research was supported by the Earth Observatory of Singapore via its funding from the National Research Foundation Singapore and the Singapore Ministry of Education under the Research Centres of Excellence initiative. JN is partly funded by NERC Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics (COMET). 2022-11-02T06:10:39Z 2022-11-02T06:10:39Z 2022 Journal Article Neuberg, J., Taisne, B., Burton, M., Ryan, G. A., Calder, E., Fournier, N. & Collinson, A. S. D. (2022). A review of tectonic, elastic and visco-elastic models exploring the deformation patterns throughout the eruption of Soufrière Hills volcano on Montserrat, West Indies. Journal of Volcanology and Geothermal Research, 425, 107518-. https://dx.doi.org/10.1016/j.jvolgeores.2022.107518 0377-0273 https://hdl.handle.net/10356/162664 10.1016/j.jvolgeores.2022.107518 2-s2.0-85127124032 425 107518 en Journal of Volcanology and Geothermal Research © 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Science::Geology
Deformation
Magma Compressibility
spellingShingle Science::Geology
Deformation
Magma Compressibility
Neuberg, J.W.
Taisne, Benoît
Burton, M.
Ryan, G. A.
Calder, E.
Fournier, N.
Collinson, A. S. D.
A review of tectonic, elastic and visco-elastic models exploring the deformation patterns throughout the eruption of Soufrière Hills volcano on Montserrat, West Indies
description Since the eruption began in 1995, Soufrière Hills volcano on Montserrat has been characterised by five phases of magma extrusion and corresponding pauses. Despite a lack of eruptive surface activity since 2010, the volcano continues to show signs of unrest in the form of ongoing outgassing, and inflation of the entire island of Montserrat. Using numerical modelling, we compare a set of contrasting deformation models in an attempt to understand the current state of Soufrière Hills volcano, and to gauge its future eruption potential. We apply a suite of deformation models including faults and dykes, and an ellipsoidal source geometry to all phases and pauses covering the entire eruptive history from 1995 through 2020. Based on recent petrological evidence suggesting no recent injection of magma from depth after an initial magma intrusion, we test the hypothesis that the ongoing inflation of Montserrat could be explained by a visco-elastic, crustal response to the initial magma intrusion without a renewed pressurisation due to magma injection. In contrast to previous modelling attempts, we focus on conceptual models and compare elastic- with several visco-elastic models taking temperature-dependent viscosity models, tectonic components, mass balance, magma compressibility and outgassing data into account. We explore a wide parameter space in a Generalised Maxwell Rheology to explain the observed deformation patterns, and demonstrate that a realistic, depth-dependent distribution of visco-elastic parameters does not allow an interpretation of the deformation signal without any magma influx or further pressurisation. Within the range of large uncertainties attached to the visco-elastic model parameters we show that visco-elasticity reduces the degree of ongoing pressurisation or magma influx into a crustal reservoir by a few percent. We conclude that magma influx at a rate of 0.10 to 0.57 m3/s is the most likely explanation of the current deformation pattern and is also in agreement with mass balance considerations and current SO2 flux observations.
author2 Earth Observatory of Singapore
author_facet Earth Observatory of Singapore
Neuberg, J.W.
Taisne, Benoît
Burton, M.
Ryan, G. A.
Calder, E.
Fournier, N.
Collinson, A. S. D.
format Article
author Neuberg, J.W.
Taisne, Benoît
Burton, M.
Ryan, G. A.
Calder, E.
Fournier, N.
Collinson, A. S. D.
author_sort Neuberg, J.W.
title A review of tectonic, elastic and visco-elastic models exploring the deformation patterns throughout the eruption of Soufrière Hills volcano on Montserrat, West Indies
title_short A review of tectonic, elastic and visco-elastic models exploring the deformation patterns throughout the eruption of Soufrière Hills volcano on Montserrat, West Indies
title_full A review of tectonic, elastic and visco-elastic models exploring the deformation patterns throughout the eruption of Soufrière Hills volcano on Montserrat, West Indies
title_fullStr A review of tectonic, elastic and visco-elastic models exploring the deformation patterns throughout the eruption of Soufrière Hills volcano on Montserrat, West Indies
title_full_unstemmed A review of tectonic, elastic and visco-elastic models exploring the deformation patterns throughout the eruption of Soufrière Hills volcano on Montserrat, West Indies
title_sort review of tectonic, elastic and visco-elastic models exploring the deformation patterns throughout the eruption of soufrière hills volcano on montserrat, west indies
publishDate 2022
url https://hdl.handle.net/10356/162664
_version_ 1749179159748280320