Expected size of random Tukey layers and convex layers

We study the Tukey layers and convex layers of a planar point set, which consists of n points independently and uniformly sampled from a convex polygon with k vertices. We show that the expected number of vertices on the first t Tukey layers is O(ktlog⁡(n/k)) and the expected number of vertices on t...

全面介紹

Saved in:
書目詳細資料
Main Authors: Guo, Zhengyang, Li, Yi, Pei, Shaoyu
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/162710
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:We study the Tukey layers and convex layers of a planar point set, which consists of n points independently and uniformly sampled from a convex polygon with k vertices. We show that the expected number of vertices on the first t Tukey layers is O(ktlog⁡(n/k)) and the expected number of vertices on the first t convex layers is O(kt3log⁡(n/(kt2))). We also show a lower bound of Ω(tlog⁡n) for both quantities in the special cases where k=3,4. The implications of those results in the average-case analysis of two computational geometry algorithms are then discussed.