Experimental evaluation of stochastic configuration networks: is SC algorithm inferior to hyper-parameter optimization method?

To overcome the pitfalls of Random Vector Functional Link (RVFL), a network called Stochastic Configuration Networks (SCN) has been proposed. By constraining and adaptively selecting the range of randomized parameters using the Stochastic Configuration (SC) algorithm, SCN claims to be potent in buil...

Full description

Saved in:
Bibliographic Details
Main Authors: Hu, Minghui, Suganthan, Ponnuthurai Nagaratnam
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/162758
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:To overcome the pitfalls of Random Vector Functional Link (RVFL), a network called Stochastic Configuration Networks (SCN) has been proposed. By constraining and adaptively selecting the range of randomized parameters using the Stochastic Configuration (SC) algorithm, SCN claims to be potent in building an incremental randomized learning system according to residual error minimization. The SC has three variants depending on how the range of output weights are updated. In this work, we first relate the SCN to appropriate literature. Subsequently, we show that the major parts of the SC algorithm can be replaced by a generic hyper-parameter optimization method to obtain overall better results.