Meta-based self-training and re-weighting for aspect-based sentiment analysis

Aspect-based sentiment analysis (ABSA) means to identify fine-grained aspects, opinions, and sentiment polarities. Recent ABSA research focuses on utilizing multi-task learning (MTL) to achieve less computational costs and better performance. However, there are certain limits in MTL-based ABSA. For...

Full description

Saved in:
Bibliographic Details
Main Authors: He, Kai, Mao, Rui, Gong, Tieliang, Li, Chen, Cambria, Erik
Other Authors: School of Computer Science and Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/163145
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Aspect-based sentiment analysis (ABSA) means to identify fine-grained aspects, opinions, and sentiment polarities. Recent ABSA research focuses on utilizing multi-task learning (MTL) to achieve less computational costs and better performance. However, there are certain limits in MTL-based ABSA. For example, unbalanced labels and sub-task learning difficulties may result in the biases that some labels and sub-tasks are overfitting, while the others are underfitting. To address these issues, inspired by neuro-symbolic learning systems, we propose a meta-based self-training method with a meta-weighter (MSM). We believe that a generalizable model can be achieved by appropriate symbolic representation selection (in-domain knowledge) and effective learning control (regulation) in a neural system. Thus, MSM trains a teacher model to generate in-domain knowledge (e.g., unlabeled data selection and pseudo-label generation), where the generated pseudo-labels are used by a student model for supervised learning. Then, the meta-weighter of MSM is jointly trained with the student model to provide each instance with sub-task-specific weights to coordinate their convergence rates, balancing class labels, and alleviating noise impacts introduced from self-training. The following experiments indicate that MSM can utilize 50% labeled data to achieve comparable results to state-of-arts models in ABSA and outperform them with all labeled data.