Decentralized adaptive control of uncertain interconnected systems with triggering state signals

Backstepping is a powerful technique of control design for uncertain systems and has been well received. As it involves differentiating virtual control signals recursively, the involved signals must be differentiable. However, when the measured states are only transmitted based on event-triggered co...

全面介紹

Saved in:
書目詳細資料
Main Authors: Zhang, Zhirong, Wen, Changyun, Zhao, Kai, Song, Yongduan
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/163541
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Backstepping is a powerful technique of control design for uncertain systems and has been well received. As it involves differentiating virtual control signals recursively, the involved signals must be differentiable. However, when the measured states are only transmitted based on event-triggered conditions, such requirement will not be met, making the recursive backstepping design procedure inapplicable. Thus it is still an open problem to study how an event-triggered scheme is employed to transmit state signals in decentralized control of uncertain interconnected systems with dynamic interactions. In this paper, we present a solution by constructing a new decentralized adaptive backstepping-based control algorithm capable of coping with discontinuity caused by state-triggering. With aid of appropriately chosen Lyapunov functions, all signals in the closed-loop system are ensured globally uniformly bounded. Simulation results are presented to demonstrate the effectiveness of the proposed methodology.