Explainable detection of myocardial infarction using deep learning models with Grad-CAM technique on ECG signals
Myocardial infarction (MI) accounts for a high number of deaths globally. In acute MI, accurate electrocardiography (ECG) is important for timely diagnosis and intervention in the emergency setting. Machine learning is increasingly being explored for automated computer-aided ECG diagnosis of cardiov...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/163633 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-163633 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1636332022-12-13T02:41:47Z Explainable detection of myocardial infarction using deep learning models with Grad-CAM technique on ECG signals Jahmunah, V. Ng, Eddie Yin Kwee Tan, Ru-San Oh, Shu Lih Acharya, U. Rajendra School of Mechanical and Aerospace Engineering Engineering::Mechanical engineering Myocardial Infarction Deep Learning Myocardial infarction (MI) accounts for a high number of deaths globally. In acute MI, accurate electrocardiography (ECG) is important for timely diagnosis and intervention in the emergency setting. Machine learning is increasingly being explored for automated computer-aided ECG diagnosis of cardiovascular diseases. In this study, we have developed DenseNet and CNN models for the classification of healthy subjects and patients with ten classes of MI based on the location of myocardial involvement. ECG signals from the Physikalisch-Technische Bundesanstalt database were pre-processed, and the ECG beats were extracted using an R peak detection algorithm. The beats were then fed to the two models separately. While both models attained high classification accuracies (more than 95%), DenseNet is the preferred model for the classification task due to its low computational complexity and higher classification accuracy than the CNN model due to feature reusability. An enhanced class activation mapping (CAM) technique called Grad-CAM was subsequently applied to the outputs of both models to enable visualization of the specific ECG leads and portions of ECG waves that were most influential for the predictive decisions made by the models for the 11 classes. It was observed that Lead V4 was the most activated lead in both the DenseNet and CNN models. Furthermore, this study has also established the different leads and parts of the signal that get activated for each class. This is the first study to report features that influenced the classification decisions of deep models for multiclass classification of MI and healthy ECGs. Hence this study is crucial and contributes significantly to the medical field as with some level of visible explainability of the inner workings of the models, the developed DenseNet and CNN models may garner needed clinical acceptance and have the potential to be implemented for ECG triage of MI diagnosis in hospitals and remote out-of-hospital settings. 2022-12-13T02:41:47Z 2022-12-13T02:41:47Z 2022 Journal Article Jahmunah, V., Ng, E. Y. K., Tan, R., Oh, S. L. & Acharya, U. R. (2022). Explainable detection of myocardial infarction using deep learning models with Grad-CAM technique on ECG signals. Computers in Biology and Medicine, 146, 105550-. https://dx.doi.org/10.1016/j.compbiomed.2022.105550 0010-4825 https://hdl.handle.net/10356/163633 10.1016/j.compbiomed.2022.105550 35533457 2-s2.0-85129766891 146 105550 en Computers in Biology and Medicine © 2022 Elsevier Ltd. All rights reserved. |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Mechanical engineering Myocardial Infarction Deep Learning |
spellingShingle |
Engineering::Mechanical engineering Myocardial Infarction Deep Learning Jahmunah, V. Ng, Eddie Yin Kwee Tan, Ru-San Oh, Shu Lih Acharya, U. Rajendra Explainable detection of myocardial infarction using deep learning models with Grad-CAM technique on ECG signals |
description |
Myocardial infarction (MI) accounts for a high number of deaths globally. In acute MI, accurate electrocardiography (ECG) is important for timely diagnosis and intervention in the emergency setting. Machine learning is increasingly being explored for automated computer-aided ECG diagnosis of cardiovascular diseases. In this study, we have developed DenseNet and CNN models for the classification of healthy subjects and patients with ten classes of MI based on the location of myocardial involvement. ECG signals from the Physikalisch-Technische Bundesanstalt database were pre-processed, and the ECG beats were extracted using an R peak detection algorithm. The beats were then fed to the two models separately. While both models attained high classification accuracies (more than 95%), DenseNet is the preferred model for the classification task due to its low computational complexity and higher classification accuracy than the CNN model due to feature reusability. An enhanced class activation mapping (CAM) technique called Grad-CAM was subsequently applied to the outputs of both models to enable visualization of the specific ECG leads and portions of ECG waves that were most influential for the predictive decisions made by the models for the 11 classes. It was observed that Lead V4 was the most activated lead in both the DenseNet and CNN models. Furthermore, this study has also established the different leads and parts of the signal that get activated for each class. This is the first study to report features that influenced the classification decisions of deep models for multiclass classification of MI and healthy ECGs. Hence this study is crucial and contributes significantly to the medical field as with some level of visible explainability of the inner workings of the models, the developed DenseNet and CNN models may garner needed clinical acceptance and have the potential to be implemented for ECG triage of MI diagnosis in hospitals and remote out-of-hospital settings. |
author2 |
School of Mechanical and Aerospace Engineering |
author_facet |
School of Mechanical and Aerospace Engineering Jahmunah, V. Ng, Eddie Yin Kwee Tan, Ru-San Oh, Shu Lih Acharya, U. Rajendra |
format |
Article |
author |
Jahmunah, V. Ng, Eddie Yin Kwee Tan, Ru-San Oh, Shu Lih Acharya, U. Rajendra |
author_sort |
Jahmunah, V. |
title |
Explainable detection of myocardial infarction using deep learning models with Grad-CAM technique on ECG signals |
title_short |
Explainable detection of myocardial infarction using deep learning models with Grad-CAM technique on ECG signals |
title_full |
Explainable detection of myocardial infarction using deep learning models with Grad-CAM technique on ECG signals |
title_fullStr |
Explainable detection of myocardial infarction using deep learning models with Grad-CAM technique on ECG signals |
title_full_unstemmed |
Explainable detection of myocardial infarction using deep learning models with Grad-CAM technique on ECG signals |
title_sort |
explainable detection of myocardial infarction using deep learning models with grad-cam technique on ecg signals |
publishDate |
2022 |
url |
https://hdl.handle.net/10356/163633 |
_version_ |
1753801121902624768 |