Understanding the particulate formation process in the engine fuelled with diesel/Jet A-1 blends

Jet fuel has been recognized as a potential alternative for traditional diesel engines because of its ability to reduce particulate matter (PM) emissions while retaining engine power output. In this study, the particulate formation process has been studied in detail using diesel/Jet A-1 blends with...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhu, Qiren, Zong, Yichen, Yu, Wenbin, Yang, Wenming, Kraft, Markus
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/163675
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Jet fuel has been recognized as a potential alternative for traditional diesel engines because of its ability to reduce particulate matter (PM) emissions while retaining engine power output. In this study, the particulate formation process has been studied in detail using diesel/Jet A-1 blends with evenly staggered ratios. The number concentration of the accumulation mode particle decreases exponentially when additional Jet A-1 is introduced to the blends under 30% engine load, as more fuel and particle precursors are oxidized. Additionally, the comparison of PM emissions with pilot-main and single main two injection strategies is conducted to better understand the particle formation process. The phenomenon of ‘particle saturation’ of nucleation mode particles is observed using the pilot-main injection strategy. With these supporting findings, we strengthen the point that the pilot-injection strategy has the potential weaken the oxidation process during the combustion process. Furthermore, this research quantifies the impact of Jet A-1 on combustion and gas emission characteristics by extracting the change rate from the data. In general, Jet A-1 tends to delay the ignition and shorten the combustion duration. The results also reveal that the rise in NOx emissions is due to a higher proportion of premixed combustion, while the increase in HC emissions is attributed to a longer ignition delay and shorter combustion time.