Thermo-responsive smart windows for year-round energy savings

In the developed countries, 40% of total energy is consumed on buildings. The heating, ventilation, and air-conditioning (HVAC) systems of buildings spend up to 50% of the total building energy usage, to maintain a comfortable indoor temperature. It is urgent to develop energy-efficient buildings wi...

Full description

Saved in:
Bibliographic Details
Main Author: Li, Dan
Other Authors: Li Shuzhou
Format: Thesis-Doctor of Philosophy
Language:English
Published: Nanyang Technological University 2022
Subjects:
Online Access:https://hdl.handle.net/10356/163691
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-163691
record_format dspace
spelling sg-ntu-dr.10356-1636912023-01-03T05:05:24Z Thermo-responsive smart windows for year-round energy savings Li, Dan Li Shuzhou School of Materials Science and Engineering LISZ@ntu.edu.sg Engineering Engineering::Materials In the developed countries, 40% of total energy is consumed on buildings. The heating, ventilation, and air-conditioning (HVAC) systems of buildings spend up to 50% of the total building energy usage, to maintain a comfortable indoor temperature. It is urgent to develop energy-efficient buildings with reduced HVAC energy consumption and windows are considered as the least energy-efficient elements in buildings. Smart windows have received much attention because they can controllably modulate indoor temperature and thermal comfort by regulating the transmittance of near infrared ray (NIR) in smart ways. NIR with wavelengths from 780 nm to 2500 nm, contributes 44% of the whole solar energy (wavelengths range from 250 nm to 2500 nm) received by earth but cannot be detected by human eyes. Therefore, smart windows, which can block NIR in summer and allow NIR transmittance in winter, are excellent solutions for year-round energy savings. To date, the energy-saving smart windows mainly rely on mechano-, photo-, electro-, and thermos-responsive technologies. Among them, thermo-responsive smart windows are supposed to be highly promising candidates because of their low cost, easy fabrication, and passive response. In this thesis, two thermo-responsive smart windows for year-round energy savings have been investigated. Firstly, a new category of thermo-responsive smart window, named a butterfly-wing-like smart window (BSW), is developed based on deformable surface morphology created from shape memory polymer by imitating the dynamic behavior mechanism of butterfly wings. The BSW can be custom designed according to the sunlight incident angles of actual applications. Both high solar modulation (ΔTsol) of 32.6% and luminous transmission (Tlum) of 64.5% are achieved by a change in the projection area of the reflectance coating, resulting from the temperature-dependent surface morphology transition and the season-dependent incident angles variation. Further, a photothermal smart window with high mid-infrared (MIR, 2.5 μm to 25 μm) reflectance (PHMR) is developed, which can minimize radiative heat exchange between indoors and outside ambient surroundings, and have tunable reflectance in NIR region with solar transmittance modulation. This kind of thermo-responsive smart windows with high mid-infrared reflectance (RMIR) and controllable near-infrared reflectance (RNIR) have rarely been studied so far. The PHMR smart window provides a solution to year-round building energy savings by using cross-aligned silver nanowires (AgNWs) as the high RMIR film and a photothermal bimorph actuator to regulate RNIR. The PHMR smart window is highly reflective for MIR light (RMIR is high to 0.86 in winter and 0.97 in summer) to minimize radiative heat exchange between rooms and outside ambient surroundings and has tunable reflectance in NIR region with a high ΔTsol of 31.1%. The building energy-saving consumption simulations indicate that the BSW and PHMR smart windows are more energy efficient than the commercial low-E glass. These smart windows are expected to be used in energy efficient buildings to reduce building energy consumption. Doctor of Philosophy 2022-12-14T02:14:58Z 2022-12-14T02:14:58Z 2022 Thesis-Doctor of Philosophy Li, D. (2022). Thermo-responsive smart windows for year-round energy savings. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/163691 https://hdl.handle.net/10356/163691 10.32657/10356/163691 en This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). application/pdf Nanyang Technological University
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering
Engineering::Materials
spellingShingle Engineering
Engineering::Materials
Li, Dan
Thermo-responsive smart windows for year-round energy savings
description In the developed countries, 40% of total energy is consumed on buildings. The heating, ventilation, and air-conditioning (HVAC) systems of buildings spend up to 50% of the total building energy usage, to maintain a comfortable indoor temperature. It is urgent to develop energy-efficient buildings with reduced HVAC energy consumption and windows are considered as the least energy-efficient elements in buildings. Smart windows have received much attention because they can controllably modulate indoor temperature and thermal comfort by regulating the transmittance of near infrared ray (NIR) in smart ways. NIR with wavelengths from 780 nm to 2500 nm, contributes 44% of the whole solar energy (wavelengths range from 250 nm to 2500 nm) received by earth but cannot be detected by human eyes. Therefore, smart windows, which can block NIR in summer and allow NIR transmittance in winter, are excellent solutions for year-round energy savings. To date, the energy-saving smart windows mainly rely on mechano-, photo-, electro-, and thermos-responsive technologies. Among them, thermo-responsive smart windows are supposed to be highly promising candidates because of their low cost, easy fabrication, and passive response. In this thesis, two thermo-responsive smart windows for year-round energy savings have been investigated. Firstly, a new category of thermo-responsive smart window, named a butterfly-wing-like smart window (BSW), is developed based on deformable surface morphology created from shape memory polymer by imitating the dynamic behavior mechanism of butterfly wings. The BSW can be custom designed according to the sunlight incident angles of actual applications. Both high solar modulation (ΔTsol) of 32.6% and luminous transmission (Tlum) of 64.5% are achieved by a change in the projection area of the reflectance coating, resulting from the temperature-dependent surface morphology transition and the season-dependent incident angles variation. Further, a photothermal smart window with high mid-infrared (MIR, 2.5 μm to 25 μm) reflectance (PHMR) is developed, which can minimize radiative heat exchange between indoors and outside ambient surroundings, and have tunable reflectance in NIR region with solar transmittance modulation. This kind of thermo-responsive smart windows with high mid-infrared reflectance (RMIR) and controllable near-infrared reflectance (RNIR) have rarely been studied so far. The PHMR smart window provides a solution to year-round building energy savings by using cross-aligned silver nanowires (AgNWs) as the high RMIR film and a photothermal bimorph actuator to regulate RNIR. The PHMR smart window is highly reflective for MIR light (RMIR is high to 0.86 in winter and 0.97 in summer) to minimize radiative heat exchange between rooms and outside ambient surroundings and has tunable reflectance in NIR region with a high ΔTsol of 31.1%. The building energy-saving consumption simulations indicate that the BSW and PHMR smart windows are more energy efficient than the commercial low-E glass. These smart windows are expected to be used in energy efficient buildings to reduce building energy consumption.
author2 Li Shuzhou
author_facet Li Shuzhou
Li, Dan
format Thesis-Doctor of Philosophy
author Li, Dan
author_sort Li, Dan
title Thermo-responsive smart windows for year-round energy savings
title_short Thermo-responsive smart windows for year-round energy savings
title_full Thermo-responsive smart windows for year-round energy savings
title_fullStr Thermo-responsive smart windows for year-round energy savings
title_full_unstemmed Thermo-responsive smart windows for year-round energy savings
title_sort thermo-responsive smart windows for year-round energy savings
publisher Nanyang Technological University
publishDate 2022
url https://hdl.handle.net/10356/163691
_version_ 1754611256824692736