Entropy-driven thermo-gelling vitrimer

Thermo-gelling polymers have been envisioned as promising smart biomaterials but limited by their weak mechanical and thermodynamic stabilities. Here, we propose a new thermo-gelling vitrimer, which remains at a liquid state because of the addition of protector molecules preventing the crosslinking,...

Full description

Saved in:
Bibliographic Details
Main Authors: Xia, Xiuyang, Rao, Peilin, Yang, Juan, Ciamarra, Massimo Pica, Ni, Ran
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/10356/163721
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Thermo-gelling polymers have been envisioned as promising smart biomaterials but limited by their weak mechanical and thermodynamic stabilities. Here, we propose a new thermo-gelling vitrimer, which remains at a liquid state because of the addition of protector molecules preventing the crosslinking, and with increasing temperature, an entropy-driven crosslinking occurs to induce the sol-gel transition. Moreover, we find that the activation barrier in the metathesis reaction of vitrimers plays an important role, and experimentally, one can use catalysts to tune the activation barrier to drive the vitrimer to form an equilibrium gel at high temperature, which is not subject to any thermodynamic instability. We formulate a mean-field theory to describe the entropy-driven crosslinking of the vitrimer, which agrees quantitatively with computer simulations and paves the way for the design and fabrication of novel vitrimers for biomedical applications.