An efficient track-before-detect for multi-PRF radars with range and doppler ambiguities
This article considers the detection and tracking of weak targets in multiple pulse repetition frequency (multi-PRF) radars using the track-before-detect (TBD) technique. By exploring the measurement independence among different PRFs, we decompose the joint multi-PRF and multiframe optimization prob...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/163763 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | This article considers the detection and tracking of weak targets in multiple pulse repetition frequency (multi-PRF) radars using the track-before-detect (TBD) technique. By exploring the measurement independence among different PRFs, we decompose the joint multi-PRF and multiframe optimization problem into several lower dimensional maximizations, each of which corresponds to an intra-PRF multiframe processing. An efficient two-stage TBD procedure with a parallel structure is proposed for the multi-PRF radars. Specifically, in the first stage, a constraint inequality is derived analytically and used to decouple the measurement ambiguities from the nonlinear conversion relationship between polar and Cartesian coordinates. The intra-PRF multiframe integration can then be carried out concurrently using the ambiguous measurements and the target-like measurement plot sequences with different ambiguities are extracted for different PRFs. In the second stage, a covariance combination fusion-based inter-PRF joint disambiguation and estimation algorithm is proposed to solve the ambiguities of the plot sequences and output high-Accuracy target tracks. Simulation experiments show that the proposed algorithm can provide a good detection performance and higher tracking accuracy with much lower complexity. |
---|