Conditional contrastive domain generalization for fault diagnosis
Data-driven fault diagnosis plays a key role in stability and reliability of operations in modern industries. Recently, deep learning has achieved remarkable performance in fault classification tasks. However, in reality, the model can be deployed under highly varying working environments. As a resu...
Saved in:
Main Authors: | , , , , , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/163780 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |