Deep non-cooperative spectrum sensing over Rayleigh fading channel

In this paper, we propose a robust non-cooperative spectrum sensing algorithm based on deep learning over Rayleigh fading channel. We conduct noise cancellation on the received sensing data using the stacked convolutional auto-encoder (SCAE) as a pre-processing step. The series of the denoised signa...

全面介紹

Saved in:
書目詳細資料
Main Authors: Su, Zhengyang, Teh, Kah Chan, Razul, Sirajudeen Gulam, Kot, Alex Chichung
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2022
主題:
在線閱讀:https://hdl.handle.net/10356/163818
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:In this paper, we propose a robust non-cooperative spectrum sensing algorithm based on deep learning over Rayleigh fading channel. We conduct noise cancellation on the received sensing data using the stacked convolutional auto-encoder (SCAE) as a pre-processing step. The series of the denoised signal in the time domain is then fed into the proposed Hybrid CNN-SA-GRU (H-CSG) network. The proposed network combines convolutional neural network (CNN), self-attention (SA) modules and gate recurrent unit (GRU). It can extract input features from spatial and temporal domains. The proposed algorithm has been shown to be effective and robust in detecting weak signals at the low signal-to-noise ratio (SNR) level.