The variance of relative surprisal as single-shot quantifier
The variance of (relative) surprisal, also known as varentropy, so far mostly plays a role in information theory as quantifying the leading order corrections to asymptotic i.i.d.~limits. Here, we comprehensively study the use of it to derive single-shot results in (quantum) information theory. We sh...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/163972 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The variance of (relative) surprisal, also known as varentropy, so far mostly plays a role in information theory as quantifying the leading order corrections to asymptotic i.i.d.~limits. Here, we comprehensively study the use of it to derive single-shot results in (quantum) information theory. We show that it gives genuine sufficient and necessary conditions for approximate
state-transitions between pairs of quantum states in the single-shot setting,
without the need for further optimization. We also clarify its relation to smoothed min- and max-entropies, and construct a monotone for resource theories using only the standard (relative) entropy and variance of (relative) surprisal. This immediately gives rise to enhanced lower bounds for entropy production in random processes. We establish certain properties of the variance of relative surprisal which will be useful for further investigations, such as
uniform continuity and upper bounds on the violation of sub-additivity. Motivated by our results, we further derive a simple and physically appealing axiomatic single-shot characterization of (relative) entropy which we believe to be of independent interest. We illustrate our results with several applications, ranging from interconvertibility of ergodic states, over Landauer
erasure to a bound on the necessary dimension of the catalyst for catalytic state transitions and Boltzmann's H-theorem. |
---|