One-shot yield-cost relations in general quantum resource theories
Although it is well known that the amount of resources that can be asymptotically distilled from a quantum state or channel does not exceed the resource cost needed to produce it, the corresponding relation in the non-asymptotic regime hitherto has not been well understood. Here, we establish a quan...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/163973 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Although it is well known that the amount of resources that can be asymptotically distilled from a quantum state or channel does not exceed the resource cost needed to produce it, the corresponding relation in the non-asymptotic regime hitherto has not been well understood. Here, we establish a quantitative relation between the one-shot distillable resource yield and
dilution cost in terms of transformation errors involved in these processes. Notably, our bound is applicable to quantum state and channel manipulation with respect to any type of quantum resource and any class of free transformations thereof, encompassing broad types of settings, including entanglement, quantum thermodynamics, and quantum communication. We also show that our techniques provide strong converse bounds relating the distillable resource and resource dilution cost in the asymptotic regime. Moreover, we introduce a class of channels that generalize twirling maps encountered in many resource theories, and by directly connecting it with resource quantification, we compute analytically several smoothed resource measures and improve our one-shot yield--cost bound in relevant theories. We use these operational insights to exactly evaluate important measures for various resource states in the resource theory of magic states. |
---|