Nacre's brick–mortar structure suppresses the adverse effect of microstructural randomness

Biological materials have evolved various degrees of robustness against microscopic defects and structural randomness. Of particular interest here is whether and how nacre's brick–mortar structure suppresses the adverse effect of microstructural randomness. To this end, a tension–shear–chain (T...

全面介紹

Saved in:
書目詳細資料
Main Authors: Yan, Yi, Zhao, Zi-Long, Feng, Xi-Qiao, Gao, Huajian
其他作者: School of Mechanical and Aerospace Engineering
格式: Article
語言:English
出版: 2023
主題:
在線閱讀:https://hdl.handle.net/10356/164041
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Biological materials have evolved various degrees of robustness against microscopic defects and structural randomness. Of particular interest here is whether and how nacre's brick–mortar structure suppresses the adverse effect of microstructural randomness. To this end, a tension–shear–chain (TSC) network model, combined with the virtual internal bond concept, is adopted to investigate the effects of microstructural randomness of nacre, where we show that the ensemble strength and failure behaviors of a larger TSC model exhibit substantially lower randomness. Our results indicate that the staggered brick–mortar structure renders nacre insensitive to microstructural randomness, resulting in enhanced resistance to strain localization and crack initiation at weaker interfaces. The influence of microstructural randomness on the size effect of the ensemble mechanical properties of nacre is also revealed. This study provides further insights and guidelines for designing strong and robust nacre-mimic composites.