The response of foraminifera to rapid sea-level rise from tidal restoration of Ni-les'tun marsh, Oregon, U.S.A
Foraminifera preserved in saltmarshes are widely used to reconstruct relative sea-level change (RSL), and inferred from this, coseismic vertical coastal motions following an earthquake. However, how quickly foraminifera respond to rapid changes in RSL is poorly understood. Here, we present a six-yea...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/164065 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-164065 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1640652023-01-04T01:52:03Z The response of foraminifera to rapid sea-level rise from tidal restoration of Ni-les'tun marsh, Oregon, U.S.A Milker, Yvonne Dura, Tina Horton, Benjamin Peter Asian School of the Environment Earth Observatory of Singapore Science::Geology Benthic Foraminifera Salt Marsh Foraminifera preserved in saltmarshes are widely used to reconstruct relative sea-level change (RSL), and inferred from this, coseismic vertical coastal motions following an earthquake. However, how quickly foraminifera respond to rapid changes in RSL is poorly understood. Here, we present a six-year foraminiferal study of the tidal restoration of Ni-les'tun marsh and a comparison of modern and fossil assemblages. We installed eight stations on the marsh and sampled these stations for live foraminifera prior to and during the first six years after tidal restoration (2011–2017), and we extruded one short core at station 1 in 2016. At stations 1 to 7, tidal flat/low marsh assemblages, dominated by Miliammina fusca, colonized 10 months to 2.5 years after tidal restoration. At station 8, the first living mixed assemblage of foraminifera, dominated by Haplophragmoides wilberti, was found 2 years after tidal restoration. Our observations suggest that M. fusca, and to some extent H. wilberti, are opportunistic species (r-strategists), able to increase their standing crop rapidly after invading a new habitat (to up to ~3600 specimens per 10 cm3 sediment volume). Potential causes for the delay in foraminifera colonization include their reproductive cycle and/or limited food availability due to the slow response of the vegetation community and soil development to tidal restoration. However, the similarity among assemblages and concentrations of agglutinated foraminifera between the fossil and modern sediments, indicate that post-depositional taphonomic processes have minimal influence when incorporated in the stratigraphic record. Although foraminifera have shown a delayed response to tidal restoration in the Ni-les'tun marsh, the similarities between the modern and fossil assemblages indicate that the delayed response of foraminifera to tidal restoration is undetectable in study areas with low sedimentation rates (in this case 3.3 mm/yr) after tidal restoration. In the case of high post-earthquake sedimentation rates, sampling a few cm higher rather than immediately above an earthquake contact could avoid uncertainties of coseismic vertical motions when foraminifera have a delayed colonization. Ministry of Education (MOE) National Research Foundation (NRF) This project was supported by funding from the German Science Foundation (DFG) to Y. Milker (Award # MI 1508/2-1). T. Dura was supported by funding from the National Science Foundation (EAR-1624795). B.P. Horton was supported by funding from the National Science Foundation (EAR-1419824), the Ministry of Education Academic Research Fund MOE2019-T3-1-004, the National Research Foundation Singapore, and the Singapore Ministry of Education, under the Research Centres of Excellence initiative. 2023-01-04T01:52:03Z 2023-01-04T01:52:03Z 2022 Journal Article Milker, Y., Dura, T. & Horton, B. P. (2022). The response of foraminifera to rapid sea-level rise from tidal restoration of Ni-les'tun marsh, Oregon, U.S.A. Marine Geology, 445, 106757-. https://dx.doi.org/10.1016/j.margeo.2022.106757 0025-3227 https://hdl.handle.net/10356/164065 10.1016/j.margeo.2022.106757 2-s2.0-85124874698 445 106757 en Marine Geology © 2022 Elsevier B.V. All rights reserved. |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Science::Geology Benthic Foraminifera Salt Marsh |
spellingShingle |
Science::Geology Benthic Foraminifera Salt Marsh Milker, Yvonne Dura, Tina Horton, Benjamin Peter The response of foraminifera to rapid sea-level rise from tidal restoration of Ni-les'tun marsh, Oregon, U.S.A |
description |
Foraminifera preserved in saltmarshes are widely used to reconstruct relative sea-level change (RSL), and inferred from this, coseismic vertical coastal motions following an earthquake. However, how quickly foraminifera respond to rapid changes in RSL is poorly understood. Here, we present a six-year foraminiferal study of the tidal restoration of Ni-les'tun marsh and a comparison of modern and fossil assemblages. We installed eight stations on the marsh and sampled these stations for live foraminifera prior to and during the first six years after tidal restoration (2011–2017), and we extruded one short core at station 1 in 2016. At stations 1 to 7, tidal flat/low marsh assemblages, dominated by Miliammina fusca, colonized 10 months to 2.5 years after tidal restoration. At station 8, the first living mixed assemblage of foraminifera, dominated by Haplophragmoides wilberti, was found 2 years after tidal restoration. Our observations suggest that M. fusca, and to some extent H. wilberti, are opportunistic species (r-strategists), able to increase their standing crop rapidly after invading a new habitat (to up to ~3600 specimens per 10 cm3 sediment volume). Potential causes for the delay in foraminifera colonization include their reproductive cycle and/or limited food availability due to the slow response of the vegetation community and soil development to tidal restoration. However, the similarity among assemblages and concentrations of agglutinated foraminifera between the fossil and modern sediments, indicate that post-depositional taphonomic processes have minimal influence when incorporated in the stratigraphic record. Although foraminifera have shown a delayed response to tidal restoration in the Ni-les'tun marsh, the similarities between the modern and fossil assemblages indicate that the delayed response of foraminifera to tidal restoration is undetectable in study areas with low sedimentation rates (in this case 3.3 mm/yr) after tidal restoration. In the case of high post-earthquake sedimentation rates, sampling a few cm higher rather than immediately above an earthquake contact could avoid uncertainties of coseismic vertical motions when foraminifera have a delayed colonization. |
author2 |
Asian School of the Environment |
author_facet |
Asian School of the Environment Milker, Yvonne Dura, Tina Horton, Benjamin Peter |
format |
Article |
author |
Milker, Yvonne Dura, Tina Horton, Benjamin Peter |
author_sort |
Milker, Yvonne |
title |
The response of foraminifera to rapid sea-level rise from tidal restoration of Ni-les'tun marsh, Oregon, U.S.A |
title_short |
The response of foraminifera to rapid sea-level rise from tidal restoration of Ni-les'tun marsh, Oregon, U.S.A |
title_full |
The response of foraminifera to rapid sea-level rise from tidal restoration of Ni-les'tun marsh, Oregon, U.S.A |
title_fullStr |
The response of foraminifera to rapid sea-level rise from tidal restoration of Ni-les'tun marsh, Oregon, U.S.A |
title_full_unstemmed |
The response of foraminifera to rapid sea-level rise from tidal restoration of Ni-les'tun marsh, Oregon, U.S.A |
title_sort |
response of foraminifera to rapid sea-level rise from tidal restoration of ni-les'tun marsh, oregon, u.s.a |
publishDate |
2023 |
url |
https://hdl.handle.net/10356/164065 |
_version_ |
1754611263262949376 |