Domain consistency regularization for unsupervised multi-source domain adaptive classification
Deep learning-based multi-source unsupervised domain adaptation (MUDA) has been actively studied in recent years. Compared with single-source unsupervised domain adaptation (SUDA), domain shift in MUDA exists not only between the source and target domains but also among multiple source domains. Most...
Saved in:
Main Authors: | Luo, Zhipeng, Zhang, Xiaobing, Lu, Shijian, Yi, Shuai |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/164101 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Scale variance minimization for unsupervised domain adaptation in image segmentation
由: Guan, Dayan, et al.
出版: (2022) -
Cross-domain retinopathy classification with optical coherence tomography images via a novel deep domain adaptation method
由: Luo, Yuemei, et al.
出版: (2023) -
Reinforced adaptation network for partial domain adaptation
由: WU, Keyu, et al.
出版: (2023) -
DEEP VISUAL DOMAIN ADAPTATION IN THE WILD
由: HU DAPENG
出版: (2023) -
Learning cross-domain semantic-visual relationships for transductive zero-shot learning
由: Lv, Fengmao, et al.
出版: (2023)