Up to fourth-order unconditionally structure-preserving parametric single-step methods for semilinear parabolic equations
We propose and analyze a class of temporal up to fourth-order unconditionally structure-preserving single-step methods for Allen–Cahn-type semilinear parabolic equations. We first revisit some up to second-order exponential time different Runge–Kutta (ETDRK) schemes, and provide unified proofs for t...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/164165 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We propose and analyze a class of temporal up to fourth-order unconditionally structure-preserving single-step methods for Allen–Cahn-type semilinear parabolic equations. We first revisit some up to second-order exponential time different Runge–Kutta (ETDRK) schemes, and provide unified proofs for the unconditionally maximum-principle-preserving and mass-conserving properties. Noting that the stabilized ETDRK schemes belong to a special class of parametric Runge–Kutta schemes, we introduce the stabilized integrating factor Runge–Kutta (sIFRK) formulation to construct new high-order parametric single-step methods, and propose two strategies to eliminate the exponential effects of sIFRK: (1) a recursive approximation; (2) a combination of exponential and linear functions. Together with the nonnegativity of coefficients and non-decreasing of abscissas, the resulting two families of improved stabilized integrating factor Runge–Kutta (isIFRK) schemes can unconditionally preserve the maximum-principle and conserve the mass. The order conditions, linear stability and convergence in the l∞-norm are analyzed rigorously. We demonstrate that the proposed framework, which is explicit and free of limiters or cut-off post-processing, offers a simple, practical, and effective approach to developing high-order unconditionally structure-preserving algorithms. Comparisons with traditional schemes demonstrate the necessity of developing high-order unconditionally structure-preserving schemes. A series of numerical experiments verify theoretical results of proposed isIFRK schemes. |
---|