Diurnal trends of indoor and outdoor fluorescent biological aerosol particles in a tropical urban area
We evaluated diurnal trends of size-resolved indoor and outdoor fluorescent biological airborne particles (FBAPs) and their contributions to particulate matter (PM) within 0.5-20 μm. After a ten-week continuous sampling via two identical wideband integrated bioaerosol sensors, we found that both ind...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/164190 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We evaluated diurnal trends of size-resolved indoor and outdoor fluorescent biological airborne particles (FBAPs) and their contributions to particulate matter (PM) within 0.5-20 μm. After a ten-week continuous sampling via two identical wideband integrated bioaerosol sensors, we found that both indoor and outdoor diurnal trends of PM were driven by its bioaerosol component. Outdoors, the median [interquartile range] FBAP mass concentration peaked at 8.2 [5.8-9.9] μg/m3 around sunrise and showed a downtrend from 6:00 to 18:00 during the daytime and an uptrend during the night. The nighttime FBAP level was 1.8 [1.4-2.2] times higher than that during the daytime, and FBAPs accounted for 45 % and 56 % of PM during daytime and nighttime, respectively. Indoors, the rise in concentrations of FBAPs smaller than 1 μm coincided with the starting operation of the heating, ventilation, and air conditioning (HVAC) system at 6:00, and the concentration peaked at 8:00 and dropped to the daily average by noontime. This indicated that the starting operation of the HVAC system dislodged the overnight settled and accumulated fine bioaerosols into the indoor environment. For particles larger than 1 μm, the variation of mass concentration was driven by occupancy. Based on regression modeling, the contributions of indoor PM, non-FBAP, and FBAP sources to indoor mass concentrations were estimated to be 93 %, 67 %, and 97 % during the occupied period. |
---|