Charge carrier dynamics in co-evaporated MAPbI₃ with a gradient in composition
Co-evaporation of metal halide perovskites by thermal evaporation is an attractive method since it does not require harmful solvents and enables precise control of the film thickness. Furthermore, the ability to manipulate the Fermi level allows the formation of a graded homojunction, providing inte...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/164220 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Co-evaporation of metal halide perovskites by thermal evaporation is an attractive method since it does not require harmful solvents and enables precise control of the film thickness. Furthermore, the ability to manipulate the Fermi level allows the formation of a graded homojunction, providing interesting opportunities to improve the charge carrier collection efficiency. However, little is known about how these properties affect the charge carrier dynamics. In this work, the structural and optoelectronic properties of co-evaporated MAPbI3films varying in thickness (100, 400, and 750 nm) with a gradient in composition are analyzed. The X-ray diffraction patterns show that excess PbI2is only present in the thick layers. From X-ray photoelectron spectroscopy depth analysis, the I/Pb atomic ratio indicates methylammonium iodide deficiencies that become more prominent with thicker films, resulting in differently n-doped regions across the thick MAPbI3films. We suggest that due to these differently n-doped regimes, an internal electric field is formed. Side-selective time-resolved microwave photo conductivity measurements show an elongation of the charge carrier lifetimes on increasing thickness. These observations can be explained by the fact that excess carriers separate under the influence of the electric field, preventing rapid decay in the thick films. |
---|