Phononic real Chern insulator with protected corner modes in graphynes

Higher-order topological insulators have attracted great research interest recently. Different from conventional topological insulators, higher-order topological insulators do not necessarily require spin-orbit coupling, which makes it possible to realize them in spinless systems. Here, we study p...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhu, Jiaojiao, Wu, Weikang, Zhao, Jianzhou, Chen, Cong, Wang, Qianqian, Sheng, Xianlei, Zhang, Lifa, Zhao, Yuxin, Yang, Shengyuan A.
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/164245
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Higher-order topological insulators have attracted great research interest recently. Different from conventional topological insulators, higher-order topological insulators do not necessarily require spin-orbit coupling, which makes it possible to realize them in spinless systems. Here, we study phonons in 2D graphyne family materials. By using first-principle calculations and topology/symmetry analysis, we find that phonons in both graphdiyne and $\gamma$-graphyne exhibit a second-order topology, which belongs to the specific case known as real Chern insulator. We identify the nontrivial phononic band gaps, which are characterized by nontrivial real Chern numbers enabled by the spacetime inversion symmetry. The protected phonon corner modes are verified by the calculation on a finite-size nanodisk. Our study extends the scope of higher-order topology to phonons in real materials. The spatially localized phonon modes could be useful for novel phononic applications.