A bifunctional catalyst of ultrathin cobalt selenide nanosheets for plastic-electroreforming-assisted green hydrogen generation
Despite the tremendous advances of electrocatalysts for the hydrogen and oxygen evolution reactions (HER/OER), there are few reports on bifunctional catalysts for the HER and plastic electroreforming. Herein, we present a facile hydrothermal and selenization treatment to fabricate cobalt selenide na...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/164270 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Despite the tremendous advances of electrocatalysts for the hydrogen and oxygen evolution reactions (HER/OER), there are few reports on bifunctional catalysts for the HER and plastic electroreforming. Herein, we present a facile hydrothermal and selenization treatment to fabricate cobalt selenide nanosheets on nickel foam (0.1-CoSe2/NF) as a bifunctional catalyst for plastic-electroreforming assisted water electrolysis. Benefiting from its large specific surface area, abundant active sites, high conductivity and 3D porous structure, 0.1-CoSe2/NF exhibits superior electrocatalytic performance and durability for both the HER and electrooxidation of plastic waste polylactic acid (PLA). Overpotentials of 202 mV (cathodic) and 288 mV (anodic) are observed at a current density of 100 mA cm−2 in an alkaline electrolyte. Moreover, PLA oxidation that suppresses the OER also addresses the safety concern of gas crossover in water electrolysis. Our work thus provides a promising pathway for low-cost, high efficiency, and stable production of green hydrogen assisted by electroreforming of plastic waste. |
---|