Hyperheuristic approach based on reinforcement learning for air traffic complexity mitigation

Airspace capacity has become a critical resource for air transportation. Complexity in traffic patterns is a structural problem, whereby airspace capacity is sometimes saturated before the number of aircraft has reached the capacity threshold. This paper addresses a strategic planning problem with a...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Juntama, Paveen, Delahaye, Daniel, Chaimatanan, Supatcha, Alam, Sameer
مؤلفون آخرون: School of Mechanical and Aerospace Engineering
التنسيق: مقال
اللغة:English
منشور في: 2023
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/164448
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Airspace capacity has become a critical resource for air transportation. Complexity in traffic patterns is a structural problem, whereby airspace capacity is sometimes saturated before the number of aircraft has reached the capacity threshold. This paper addresses a strategic planning problem with an efficient optimization approach that minimizes traffic complexity based on linear dynamical systems in order to improve the traffic structure. Traffic structuring techniques comprise departure time adjustment, en route trajectory deviation, and flight-level allocation. The resolution approach relies on the hyperheuristic framework based on reinforcement learning to improve the searching strategy during the optimization process. The proposed methodology is implemented and tested with a full day of traffic in the French airspace. Numerical results show that the proposed approach can reduce air traffic complexity by 92.8%. The performance of the proposed algorithm is then compared with two different algorithms, including the random search and the standard simulated annealing. The proposed algorithm provides better results in terms of air traffic complexity and the number of modified trajectories. Further analysis of the proposed model was conducted by considering time uncertainties. This approach can be an innovative solution for capacity management in the future air traffic management system.