Au atoms anchored on amorphous C₃N₄ for single-site Raman enhancement

From spanning bulks to nanoclusters, surface-enhanced Raman scattering (SERS) substrates of noble metals have frequently been explored for a long time. However, further downsizing nanoclusters to the atomic level, the surface plasmon resonance effect disappears, making the research on the SERS effec...

全面介紹

Saved in:
書目詳細資料
Main Authors: Yu, Jian, Chen, Chao, Zhang, Qinghua, Lin, Jie, Yang, Xiuyi, Gu, Lin, Zhang, Hui, Liu, Zhi, Wang, Yu, Zhang, Shuo, Wang, Xiaotian, Guo, Lin
其他作者: School of Materials Science and Engineering
格式: Article
語言:English
出版: 2023
主題:
在線閱讀:https://hdl.handle.net/10356/164486
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:From spanning bulks to nanoclusters, surface-enhanced Raman scattering (SERS) substrates of noble metals have frequently been explored for a long time. However, further downsizing nanoclusters to the atomic level, the surface plasmon resonance effect disappears, making the research on the SERS effect of atom-scale noble metal still lacking. Here, we discover a single-atom enhanced Raman scattering (SAERS) effect based on Au single atoms anchored on amorphous C3N4 nanosheets (Au1/ACNs). The Au1/ACN exhibits an excellent spectral stability and reproducibility, as the uniform dispersed Au single atoms avoid the agglomeration of Au atoms to generate nonuniformly dispersed "hotspots" that suffer from poor SERS stability and reproducibility. Even only ∼2.5% Au-coated area in the laser illuminated area can yield an enhancement factor of 2.5 × 104. The SAERS effect is attributed to the synergistic effect of Au single atoms anchored on amorphous C3N4, which increases the dipole moment and polarizability of molecules, enhancing the Raman signal of probe molecules. Furthermore, we propose a novel single-atom charge transfer mechanism that single-atom Au dominates higher electron delocalizability and higher electronic density of states near the HOMO level than the Au cluster. Our results will erect a new milepost for the application of single-atom materials in the field of enhanced Raman spectroscopy.