Unsupervised data-driven classification of topological gapped systems with symmetries

A remarkable breakthrough in topological phase classification is the establishment of the topological periodic table, which is mainly based on the classifying space analysis or K theory, but not based on concrete Hamiltonians that possess finite bands or arise in a lattice. As a result, it is still...

全面介紹

Saved in:
書目詳細資料
Main Authors: Long, Yang, Zhang, Baile
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2023
主題:
在線閱讀:https://hdl.handle.net/10356/164496
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:A remarkable breakthrough in topological phase classification is the establishment of the topological periodic table, which is mainly based on the classifying space analysis or K theory, but not based on concrete Hamiltonians that possess finite bands or arise in a lattice. As a result, it is still difficult to identify the topological phase of an arbitrary Hamiltonian; the common practice is, instead, to check the incomplete and still growing list of topological invariants one by one, very often by trial and error. Here, we develop unsupervised classifications of topological gapped systems with symmetries, and demonstrate the data-driven construction of the topological periodic table without a priori knowledge of topological invariants. This unsupervised data-driven strategy can take into account spatial symmetries, and further classify phases that were previously classified as trivial in the past. Our Letter introduces machine learning into topological phase classification and paves the way for intelligent explorations of new phases of topological matter.