Alternating sign property of the perfect matching derangement graph
It was conjectured in the monograph [9] by Godsil and Meagher and in the article [10] by Lindzey that the perfect matching derangement graph M2n possesses the alternating sign property, that is, for any integer partition λ=(λ1,…,λr)⊢n, the sign of the eigenvalue ηλ of M2n is given by sign(ηλ)=(−1)n−...
Saved in:
Main Authors: | , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/164642 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
總結: | It was conjectured in the monograph [9] by Godsil and Meagher and in the article [10] by Lindzey that the perfect matching derangement graph M2n possesses the alternating sign property, that is, for any integer partition λ=(λ1,…,λr)⊢n, the sign of the eigenvalue ηλ of M2n is given by sign(ηλ)=(−1)n−λ1. In this paper, we prove that the conjecture is true. Our approach yields a recurrence formula for the eigenvalues of the perfect matching derangement graph as well as a new recurrence formula for the eigenvalues of the permutation derangement graph. |
---|