High-fidelity 2-way FSI simulation of a wind turbine using fully structured multiblock meshes in openfoam for accurate aero-elastic analysis

With increased interest in renewable energy, the power capacity of wind turbines is constantly increasing, which leads to increased rotor sizes. With ever larger rotor diameters, the complex and non-linear fluid-structure interaction (FSI) effects on wind turbine aerodynamic performances become sign...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhangaskanov, Dinmukhamed, Batay, Sagidolla, Kamalov, Bagdaulet, Zhao, Yong, Su, Xiaohui, Ng, Eddie Yin Kwee
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/164716
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:With increased interest in renewable energy, the power capacity of wind turbines is constantly increasing, which leads to increased rotor sizes. With ever larger rotor diameters, the complex and non-linear fluid-structure interaction (FSI) effects on wind turbine aerodynamic performances become significant, which can be fully studied using hi-fidelity 2-way FSI simulation. In this study, a two-way FSI model is developed and implemented in Openfoam to investigate the FSI effects on the NREL Phase VI wind turbine. The fully structured multiblock (MB) mesh method is used for the fluid and solid domains to achieve good accuracy. A coupling method based on the ALE is developed to ensure rotation and deformation can happen simultaneously and smoothly. The simulation results show that hi-fidelity CFD (Computational Fluid Dynamics) and CSD (Computational Structural Dynamics) -based 2-way FSI simulation provides high accurate results for wind turbine simulation and multi-disciplinary design optimization (MDO).