Diversified sine–cosine algorithm based on differential evolution for multidimensional knapsack problem
The sine–cosine algorithm (SCA) is one of the simplest and efficient stochastic search algorithms in the field of metaheuristics. It has shown its efficacy in solving several real-life applications. However, in some cases, it shows stagnation at local optima and premature convergence issues due to l...
محفوظ في:
المؤلفون الرئيسيون: | Gupta, Shubham, Su, Rong, Singh, Shitu |
---|---|
مؤلفون آخرون: | School of Electrical and Electronic Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/164756 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Rationalized Sine Cosine Optimization with Efficient Searching Patterns
بواسطة: Huang, H., وآخرون
منشور في: (2021) -
An efficient differential evolution with fitness-based dynamic mutation strategy and control parameters
بواسطة: Gupta, Shubham, وآخرون
منشور في: (2022) -
Evaluation of Sino Foreign Cooperative Education Project Using Orthogonal Sine Cosine Optimized Kernel Extreme Learning Machine
بواسطة: Zhu, W., وآخرون
منشور في: (2021) -
Urban traffic light scheduling for pedestrian–vehicle mixed-flow networks using discrete sine–cosine algorithm and its variants
بواسطة: Gupta, Shubham, وآخرون
منشور في: (2022) -
Multiple elite individual guided piecewise search-based differential evolution
بواسطة: Gupta, Shubham, وآخرون
منشور في: (2023)