Clustered, stacked and imbricated large coastal rock clasts on Ludao Island, southeast Taiwan, and their application to palaeotyphoon intensity assessment

This work investigated the characteristics of a boulder field on the exposed south east coast of Ludao Island (Green Island) in southern Taiwan. Although the region regularly experiences seasonal Pacific typhoons, fieldwork on Ludao was prompted following the double-strike of Typhoon Tembin in Augus...

Full description

Saved in:
Bibliographic Details
Main Authors: Terry, James P., Lau, Annie A. Y., Nguyen, Kim Anh, Liou, Yuei-An, Switzer, Adam D.
Other Authors: Asian School of the Environment
Format: Article
Language:English
Published: 2023
Subjects:
Online Access:https://hdl.handle.net/10356/164764
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-164764
record_format dspace
spelling sg-ntu-dr.10356-1647642023-02-18T23:31:41Z Clustered, stacked and imbricated large coastal rock clasts on Ludao Island, southeast Taiwan, and their application to palaeotyphoon intensity assessment Terry, James P. Lau, Annie A. Y. Nguyen, Kim Anh Liou, Yuei-An Switzer, Adam D. Asian School of the Environment Earth Observatory of Singapore Science::Geology Coastal Boulders Wave Transport This work investigated the characteristics of a boulder field on the exposed south east coast of Ludao Island (Green Island) in southern Taiwan. Although the region regularly experiences seasonal Pacific typhoons, fieldwork on Ludao was prompted following the double-strike of Typhoon Tembin in August 2012, which followed an unusual looping track and was one of the strongest storms to affect the island in recent decades. In Wen Cuen Bay, large limestone and volcanic clasts (103–105 kg) occur both as isolated individuals and also grouped into distinct clusters across the gently-sloping emerged reef platform of Holocene age. Some individuals reach megaclast proportions. Observations revealed limited evidence for the production of new coastal boulders by Typhoon Tembin. However, clustering, stacking and notable imbrication of old large clasts provide evidence for multiple high-energy palaeoevents. Stacking and imbrication are significant depositional features, implying that (partial) lifting by wave transport was responsible. Boulders deposited by Typhoon Tembin suggest that storm produced minimum flow velocities of 3.2–5.1 m/s. This range of minimum flow velocity (MFV) values is lower than the 4.3–13.8 m/s range inferred from the pre-Tembin boulders, which indicates that older storm washovers must have been stronger, judging from their ability to stack and imbricate large clasts. One explanation for high upper values of palaeoevent MFVs is that localized funnelling of water flow through narrow relict channels (inherited spur-and-groove morphology, oriented perpendicular to the modern reef edge) concentrates onshore flow energy into powerful confined jets. Support for this hypothesis is the positioning and train-of-direction of the main imbricated boulder cluster at the landward head of one such feature. Geomorphic controls amplifying wave-driven flow velocities across the emerged Holocene reef mean that a palaeotyphoon origin is sufficient for explaining large clast stacking and imbrication, without the need to invoke a tsunami hypothesis. Nanyang Technological University Published version JT acknowledges research support from the National University of Singapore (ARF grant FY2012-FRC2-005) and Zayed University (RIF grant R19088). AL and AS acknowledge research support from the National University of Singapore and Earth Observatory of Singapore (EOS) at Nanyang Technological University. 2023-02-13T08:08:07Z 2023-02-13T08:08:07Z 2021 Journal Article Terry, J. P., Lau, A. A. Y., Nguyen, K. A., Liou, Y. & Switzer, A. D. (2021). Clustered, stacked and imbricated large coastal rock clasts on Ludao Island, southeast Taiwan, and their application to palaeotyphoon intensity assessment. Frontiers in Earth Science, 9, 792369-. https://dx.doi.org/10.3389/feart.2021.792369 2296-6463 https://hdl.handle.net/10356/164764 10.3389/feart.2021.792369 2-s2.0-85121222542 9 792369 en Frontiers in Earth Science © 2021 Terry, Lau, Nguyen, Liou and Switzer. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Science::Geology
Coastal Boulders
Wave Transport
spellingShingle Science::Geology
Coastal Boulders
Wave Transport
Terry, James P.
Lau, Annie A. Y.
Nguyen, Kim Anh
Liou, Yuei-An
Switzer, Adam D.
Clustered, stacked and imbricated large coastal rock clasts on Ludao Island, southeast Taiwan, and their application to palaeotyphoon intensity assessment
description This work investigated the characteristics of a boulder field on the exposed south east coast of Ludao Island (Green Island) in southern Taiwan. Although the region regularly experiences seasonal Pacific typhoons, fieldwork on Ludao was prompted following the double-strike of Typhoon Tembin in August 2012, which followed an unusual looping track and was one of the strongest storms to affect the island in recent decades. In Wen Cuen Bay, large limestone and volcanic clasts (103–105 kg) occur both as isolated individuals and also grouped into distinct clusters across the gently-sloping emerged reef platform of Holocene age. Some individuals reach megaclast proportions. Observations revealed limited evidence for the production of new coastal boulders by Typhoon Tembin. However, clustering, stacking and notable imbrication of old large clasts provide evidence for multiple high-energy palaeoevents. Stacking and imbrication are significant depositional features, implying that (partial) lifting by wave transport was responsible. Boulders deposited by Typhoon Tembin suggest that storm produced minimum flow velocities of 3.2–5.1 m/s. This range of minimum flow velocity (MFV) values is lower than the 4.3–13.8 m/s range inferred from the pre-Tembin boulders, which indicates that older storm washovers must have been stronger, judging from their ability to stack and imbricate large clasts. One explanation for high upper values of palaeoevent MFVs is that localized funnelling of water flow through narrow relict channels (inherited spur-and-groove morphology, oriented perpendicular to the modern reef edge) concentrates onshore flow energy into powerful confined jets. Support for this hypothesis is the positioning and train-of-direction of the main imbricated boulder cluster at the landward head of one such feature. Geomorphic controls amplifying wave-driven flow velocities across the emerged Holocene reef mean that a palaeotyphoon origin is sufficient for explaining large clast stacking and imbrication, without the need to invoke a tsunami hypothesis.
author2 Asian School of the Environment
author_facet Asian School of the Environment
Terry, James P.
Lau, Annie A. Y.
Nguyen, Kim Anh
Liou, Yuei-An
Switzer, Adam D.
format Article
author Terry, James P.
Lau, Annie A. Y.
Nguyen, Kim Anh
Liou, Yuei-An
Switzer, Adam D.
author_sort Terry, James P.
title Clustered, stacked and imbricated large coastal rock clasts on Ludao Island, southeast Taiwan, and their application to palaeotyphoon intensity assessment
title_short Clustered, stacked and imbricated large coastal rock clasts on Ludao Island, southeast Taiwan, and their application to palaeotyphoon intensity assessment
title_full Clustered, stacked and imbricated large coastal rock clasts on Ludao Island, southeast Taiwan, and their application to palaeotyphoon intensity assessment
title_fullStr Clustered, stacked and imbricated large coastal rock clasts on Ludao Island, southeast Taiwan, and their application to palaeotyphoon intensity assessment
title_full_unstemmed Clustered, stacked and imbricated large coastal rock clasts on Ludao Island, southeast Taiwan, and their application to palaeotyphoon intensity assessment
title_sort clustered, stacked and imbricated large coastal rock clasts on ludao island, southeast taiwan, and their application to palaeotyphoon intensity assessment
publishDate 2023
url https://hdl.handle.net/10356/164764
_version_ 1759058789546328064