JPA: joint metabolic feature extraction increases the depth of chemical coverage for LC-MS-based metabolomics and exposomics

Extracting metabolic features from liquid chromatography-mass spectrometry (LC-MS) data has been a long-standing bioinformatic challenge in untargeted metabolomics. Conventional feature extraction algorithms fail to recognize features with low signal intensities, poor chromatographic peak shapes, or...

全面介紹

Saved in:
書目詳細資料
Main Authors: Guo, Jian, Shen, Sam, Liu, Min, Wang, Chenjingyi, Low, Brian, Chen, Ying, Hu, Yaxi, Xing, Shipei, Yu, Huaxu, Gao, Yu, Fang, Mingliang, Huan, Tao
其他作者: School of Civil and Environmental Engineering
格式: Article
語言:English
出版: 2023
主題:
在線閱讀:https://hdl.handle.net/10356/164852
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English